Abstract
The lubricant shear modulus G and Ree-Eyring shear stress τ0 are determined in this work by using Roelands’, rather than Barus’, relationship for calculating the lubricant viscosity. When using Roelands’ viscosity, elastic effects in the lubricant tend to be negligible, especially when inlet shear heating and displacement of the center of pressure are considered. These results are illustrated by examples in which inlet shear heating has been calculated, or when the lateral traction force obtained by spinning was known. In some cases, elastic effects are indeed present, though much reduced, and this leads to greater values of the lubricant shear modulus. The Ree-Eyring shear stress found when using the Roelands’ viscosity is also greater.

This publication has 0 references indexed in Scilit: