Macromolecular diffusion constants: A calculational strategy
- 1 September 1985
- journal article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 83 (5) , 2390-2397
- https://doi.org/10.1063/1.449283
Abstract
Calculations of diffusion constants for rigid molecules of arbitrary shape are often based on hydrodynamic interactions between freely moving spheres. Molecules can be modeled as collections of spheres, and the interactions are approximated as pairwise additive. Singularities previously associated with nearly linear geometries and with geometries dominated by a large central element can be avoided by including torque-angular velocity and torque-velocity coupling, as well as the usual force-velocity coupling between spheres. I provide explicit formulas for these couplings for both nonoverlapping and overlapping spheres, and also show how to include effects of one sphere on the self-diffusion of another. This formulation is incorporated in an algorithm that involves neither Gauss–Seidel iterations nor direct inversion of a large matrix.Keywords
This publication has 24 references indexed in Scilit:
- A general method for evaluation of diffusion constants, dilute‐solution viscoelasticity, and the dielectric property of a rigid macromolecule with an arbitrary configuration. IBiopolymers, 1977
- Frictional properties of nonspherical multisubunit structures. Application to tubules and cylindersBiopolymers, 1976
- Frictional coefficients of multisubunit structures. I. TheoryBiopolymers, 1967
- Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric LossThe Journal of Chemical Physics, 1956
- The general theory of irreversible processes in solutions of macromoleculesJournal of Polymer Science, 1954
- The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Visco‐elastic behaviorRecueil des Travaux Chimiques des Pays-Bas, 1949
- The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in SolutionThe Journal of Chemical Physics, 1948
- Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidalesJournal de Physique et le Radium, 1936
- Mouvement brownien d'un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidalesJournal de Physique et le Radium, 1934
- Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten TeilchenAnnalen der Physik, 1905