Interface trap transformation in radiation or hot-electron damaged MOS structures
- 1 December 1989
- journal article
- Published by IOP Publishing in Semiconductor Science and Technology
- Vol. 4 (12) , 1061-1079
- https://doi.org/10.1088/0268-1242/4/12/009
Abstract
The interface traps created by ionising radiation or hot-electron injection in MOS capacitors have been found to undergo significant changes with time over an extended period (many months). Immediately after radiation or hot-electron damage, an interface trap peak above the midgap ( approximately Ev+0.75 eV) invariably appears. This peak (designated peak 1), along with its background, would continuously change with time after damage, and the detailed time-dependent behaviour depends on the surface orientation of the Si substrate, processing history, gate bias and sample temperature. For samples made on (100) substrates, three separable regimes have been observed: (i) latent generation (peak 1 and its background increase with time), (ii) defect transformation (peak 1 gradually converts into peak 2 below the midgap, resulting in a double-peak interface trap distribution), and (iii) room-temperature annealing (the overall density of interface traps decreases with time). The focus of this paper is on the defect transformation process. For samples made on (111) samples, on the other hand, the most salient feature is the gradual shift of the energy position of peak 1 toward the valence band, and eventually a single-peak residing below the midgap is observed. In contrast to the (100) results, no discernible double-peak distribution has been found in (111) samples. Results on (110) samples are qualitatively similar to those on (111) samples, while (311) samples are similar to (100) samples. The various experimental parameters that affect the defect transformation process in both (100) and (111) samples will be discussed. While the (100) results are too complex to be explained satisfactorily based on existing theories at the present time, the (111) results will be interpreted in terms of the atomic relaxation of the dangling-bond defect at the (111)Si/SiO2 interface.Keywords
This publication has 10 references indexed in Scilit:
- Radiation and hot-electron effects on SiO2/Si interfaces with oxides grown in O2 containing small amounts of trichloroethaneApplied Physics Letters, 1988
- Theory of thecenter at the Si/interfacePhysical Review B, 1987
- Interface traps and P b centers in oxidized (100) silicon wafersApplied Physics Letters, 1986
- Model of electronic states at the Si-interfacePhysical Review B, 1986
- Dependence of X-Ray Generation of Interface Traps on Gate Metal Induced Interfacial Stress in MOS StructuresIEEE Transactions on Nuclear Science, 1984
- Characterization of Si/SiO2 interface defects by electron spin resonanceProgress in Surface Science, 1983
- Measurement of interface defect states at oxidized silicon surfaces by constant-capacitance DLTSJournal of Vacuum Science and Technology, 1979
- Two-stage process for buildup of radiation-induced interface statesJournal of Applied Physics, 1979
- Field- and Time-Dependent Radiation Effects at the SiO2/Si Interface of Hardened MOS CapacitorsIEEE Transactions on Nuclear Science, 1977
- Dependence of Interface-State Buildup on Hole Generation and Transport in Irradiated MOS CapacitorsIEEE Transactions on Nuclear Science, 1976