Abstract
The elaborate cross-connections among membranous organelles (MO), microtubules (MT), and neurofilaments (NF) were demonstrated in unifixed axons by the quick-freeze, deep-etch, and rotary-shadowing method. They were categorized into three groups: NF-associated cross-linker, MT-associated cross-bridges, and long cross-links in the subaxolemmal space. Other methods were also employed to make sure that the observed cross-connections in the unfixed axons were not a result of artifactual condensation or precipitation of soluble components or salt during deep-etching. Axolemma were permeablized either chemically (0.1% saponin) or physically (gentle homogenization), to allow egress of their soluble components from the axon; or else the axons were washed with distilled water after fixation. After physical rupture of the axolemma or saponin treatment, most of the MO remained intact. MT were stabilized by adding taxol in the incubation medium.