Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals

Abstract
Recent advances have been made in thin-film solar cells using CdTe and CuIn1−xGaxSe2 (CIGS) nanoparticles, which have achieved impressive efficiencies. Despite these efficiencies, CdTe and CIGS are not amenable to large-scale production because of the cost and scarcity of Te, In, and Ga. Cu2ZnSnS4 (CZTS), however, is an emerging solar cell material that contains only earth-abundant elements and has a near-optimal direct band gap of 1.45−1.65 eV and a large absorption coefficient. Here we report the direct synthesis of CZTS nanocrystals using the hot-injection method. In-depth characterization indicated that pure stoichiometric CZTS nanocrystals with an average particle size of 12.8 ± 1.8 nm were formed. Optical measurements showed a band gap of 1.5 eV, which is optimal for a single-junction solar device.