Murine Coronavirus Induces Type I Interferon in Oligodendrocytes through Recognition by RIG-I and MDA5

Abstract
The murine coronavirus mouse hepatitis virus (MHV) induced the expression of type I interferon (alpha/beta interferon [IFN-α/β]) in mouse oligodendrocytic N20.1 cells. This induction is completely dependent on virus replication, since infection with UV light-inactivated virus could no longer induce IFN-α/β. We show that MHV infection activated both transcription factors, the IFN regulatory factor 3 (IRF-3) and nuclear factor κB (NF-κB), as evidenced by phosphorylation and nuclear translocation of IRF-3 and an increased promoter binding activity for IRF-3 and NF-κB. Furthermore, the cytoplasmic pattern recognition receptor retinoic acid-inducible gene I (RIG-I) was induced by MHV infection. Knockdown of RIG-I by small interfering RNAs blocked the activation of IRF-3 and subsequent IFN-α/β production induced by MHV infection. Knockdown of another cytoplasmic receptor, the melanoma-differentiation-associated gene 5 (MDA5), by small interfering RNAs also blocked IFN-β induction. These results demonstrate that MHV is recognized by both RIG-I and MDA5 and induces IFN-α/β through the activation of the IRF-3 signaling pathway. However, knockdown of RIG-I only partially blocked NF-κB activity induced by MHV infection and inhibition of NF-κB activity by a decoy peptide inhibitor had little effect on IFN-α/β production. These data suggest that activation of the NF-κB pathway might not play a critical role in IFN-α/β induction by MHV infection in oligodendrocytes.