On the Infrared Exponent for Gluon and Ghost Propagation in Landau Gauge QCD

  • 20 February 2002
Abstract
In the covariant description of confinement, one expects the ghost correlations to be infrared enhanced. Assuming ghost dominance, the long-range behavior of gluon and ghost correlations in Landau gauge QCD is determined by one exponent kappa. The gluon propagator is infrared finite (vanishing) for kappa =1/2 (kappa > 1/2) which is still under debate. Here, we study critical exponent and coupling for the infrared conformal behavior from the asymptotic form of the solutions to the Dyson-Schwinger equations in an ultraviolet finite expansion scheme. The value for kappa is directly related to the ghost-gluon vertex. Assuming that it is regular in the infrared, one obtains kappa = 0.595. This value maximizes the critical coupling alpha_c(kappa), yielding alpha_c^max = (4\pi/N_c) 0.709 approx. 2.97 for N_c=3. For larger kappa the vertex acquires an infrared singularity in the gluon momentum, smaller ones imply infrared singular ghost legs. Variations in alpha_c remain within 5% from kappa = 0.5 to 0.7. Above this range, alpha_c decreases more rapidly with alpha_c -> 0 as kappa -> 1 which sets the upper bound on kappa.

This publication has 0 references indexed in Scilit: