On Heavy Element Enrichment in Classical Novae
Preprint
- 29 October 2003
Abstract
Many classical nova ejecta are enriched in CNO and Ne. Rosner et al. recently suggested that the enrichment might originate in the resonant interaction between large-scale shear flows in the accreted H/He envelope and gravity waves at the interface between the envelope and the underlying C/O white dwarf. The shear flow amplifies the waves, which eventually form cusps and break. This wave breaking injects a spray of C/O into the superincumbent H/He. Using two-dimensional simulations, we formulate a quantitative expression for the amount of C/O per unit area that can be entrained into the H/He at saturation. The fraction of the envelope that is enriched depends on the horizontal distribution of shear velocity and the density contrast between the C/O white dwarf and the H/He layer but is roughly independent of the vertical shape of the shear profile. Using this parameterization for the mixed mass, we then perform several one-dimensional Lagrangian calculations of an accreting white dwarf envelope and consider two scenarios: that the wave breaking and mixing is driven by the convective flows; and that the mixing occurs prior to the onset of convection. In the absence of enrichment prior to ignition, the base of the convective zone, as calculated from mixing-length theory with the Ledoux instability criterion, does not reach the C/O interface. As a result, there is no additional mixing, and the runaway is slow. In contrast, the formation of a mixed layer during the accretion of H/He, prior to ignition, causes a more violent runaway. The envelope can be enriched by <25% of C/O by mass (consistent with that observed in some ejecta) for shear velocities, over the surface, with Mach numbers <0.4.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: