Impaired Perceptual Memory of Locations across Gaze-shifts in Patients with Unilateral Spatial Neglect
- 1 August 2007
- journal article
- Published by MIT Press in Journal of Cognitive Neuroscience
- Vol. 19 (8) , 1388-1406
- https://doi.org/10.1162/jocn.2007.19.8.1388
Abstract
Right hemisphere lesions often lead to severe disorders in spatial awareness and behavior, such as left hemispatial neglect. Neglect involves not only pathological biases in attention and exploration but also deficits in internal representations of space and spatial working memory. Here we designed a new paradigm to test whether one potential component may involve a failure to maintain an updated representation of visual locations across delays when a gaze-shift intervenes. Right hemisphere patients with varying severity of left spatial neglect had to encode a single target location and retain it across an interval of 2 or 3 sec, during which the target was transiently removed, before a subsequent probe appeared for a same/different location judgment. During the delay, gaze could have to shift to either side of the remembered location, or no gaze-shift was required. Patients showed a dramatic loss of memory for target location after shifting gaze to its right (toward their “intact” ipsilesional side), but not after leftward gaze-shifts. Such impairment arose even when the target initially appeared in the right visual field, before being updated leftward due to right gaze, and even when gaze returned to the screen center before the memory probe was presented. These findings indicate that location information may be permanently degraded when the target has to be remapped leftward in gaze-centric representations. Across patients, the location-memory deficit induced by rightward gaze-shifts correlated with left neglect severity on several clinical tests. This paradoxical memory deficit, with worse performance following gaze-shifts to the “intact” side of space, may reflect losses in gaze-centric representations of space that normally remap a remembered location dynamically relative to current gaze. Right gaze-shifts may remap remembered locations leftward, into damaged representations, whereas left gaze-shifts will require remapping rightward, into intact representations. Our findings accord with physiological data on normal remapping mechanisms in the primate brain but demonstrate for the first time their impact on perceptual spatial memory when damaged, while providing new insights into possible components that may contribute to the neglect syndrome. Abstract Right hemisphere lesions often lead to severe disorders in spatial awareness and behavior, such as left hemispatial neglect. Neglect involves not only pathological biases in attention and exploration but also deficits in internal representations of space and spatial working memory. Here we designed a new paradigm to test whether one potential component may involve a failure to maintain an updated representation of visual locations across delays when a gaze-shift intervenes. Right hemisphere patients with varying severity of left spatial neglect had to encode a single target location and retain it across an interval of 2 or 3 sec, during which the target was transiently removed, before a subsequent probe appeared for a same/different location judgment. During the delay, gaze could have to shift to either side of the remembered location, or no gaze-shift was required. Patients showed a dramatic loss of memory for target location after shifting gaze to its right (toward their “intact” ipsilesional side), but not after leftward gaze-shifts. Such impairment arose even when the target initially appeared in the right visual field, before being updated leftward due to right gaze, and even when gaze returned to the screen center before the memory probe was presented. These findings indicate that location information may be permanently degraded when the target has to be remapped leftward in gaze-centric representations. Across patients, the location-memory deficit induced by rightward gaze-shifts correlated with left neglect severity on several clinical tests. This paradoxical memory deficit, with worse performance following gaze-shifts to the “intact” side of space, may reflect losses in gaze-centric representations of space that normally remap a remembered location dynamically relative to current gaze. Right gaze-shifts may remap remembered locations leftward, into damaged representations, whereas left gaze-shifts will require remapping rightward, into intact representations. Our findings accord with physiological data on normal remapping mechanisms in the primate brain but demonstrate for the first time their impact on perceptual spatial memory when damaged, while providing new insights into possible components that may contribute to the neglect syndrome. Abstract Right hemisphere lesions often lead to severe disorders in spatial awareness and behavior, such as left hemispatial neglect. Neglect involves not only pathological biases in attention and exploration but also deficits in internal representations of space and spatial working memory. Here we designed a new paradigm to test whether one potential component may involve a failure to maintain an updated representation of visual locations across delays when a gaze-shift intervenes. Right hemisphere patients with varying severity of left spatial neglect had to encode a single target location and retain it across an interval of 2 or 3 sec, during which the target was transiently removed, before a subsequent probe appeared for a same/different location judgment. During the delay, gaze could have to shift to either side of the remembered location, or no gaze-shift was required. Patients showed a dramatic loss of memory for target location after shifting gaze to its right (toward their “intact” ipsilesional side), but not after leftward gaze-shifts. Such impairment arose even when the target initially appeared in the right visual field, before being updated leftward due to right gaze, and even when gaze returned to the screen center before the memory probe was presented. These findings indicate that location information may be...Keywords
This publication has 72 references indexed in Scilit:
- Anatomy of Spatial Attention: Insights from Perfusion Imaging and Hemispatial Neglect in Acute StrokeJournal of Neuroscience, 2005
- Parietal Lobe Lesions Disrupt Saccadic Remapping of Inhibitory Location TaggingJournal of Cognitive Neuroscience, 2004
- The Anatomy of Spatial Neglect based on Voxelwise Statistical Analysis: A Study of 140 PatientsCerebral Cortex, 2004
- Neural Systems for Visual Orienting and Their Relationships to Spatial Working MemoryJournal of Cognitive Neuroscience, 2002
- Mechanisms Underlying Spatial Representation Revealed through Studies of Hemispatial NeglectJournal of Cognitive Neuroscience, 2002
- SPACE AND ATTENTION IN PARIETAL CORTEXAnnual Review of Neuroscience, 1999
- Neural representation of objects in space: a dual coding accountPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1998
- Anatomical and Neurological Correlates of Acute and Chronic Visuospatial Neglect Following Right Hemisphere StrokeCortex, 1997
- SACCADIC DYSMETRIA IN A PATIENT WITH A RIGHT FRONTOPARIETAL LESIONBrain, 1992
- Relation between cognitive and motor-oriented systems of visual position perception.Journal of Experimental Psychology: Human Perception and Performance, 1979