A Nuclear Function for Armadillo/β-Catenin
Open Access
- 10 February 2004
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Biology
- Vol. 2 (4) , e95
- https://doi.org/10.1371/journal.pbio.0020095
Abstract
The Wnt signaling pathway provides key information during development of vertebrates and invertebrates, and mutations in this pathway lead to various forms of cancer. Wnt binding to its receptor causes the stabilization and nuclear localization of β-catenin. Nuclear β-catenin then functions to activate transcription in conjunction with the transcription factor TCF. A recent report has challenged this basic precept of the Wnt signaling field, arguing that the nuclear localization of β-catenin may be unrelated to its function and that β-catenin functions at the plasma membrane to activate this signaling pathway. Here we present evidence that the pathway in fact does depend on the nuclear localization of β-catenin. We reexamine the functionality of various truncations of β-catenin and find that only the most severe truncations are true signaling-null mutations. Further, we define a signaling-null condition and use it to show that membrane-tethered β-catenin is insufficient to activate transcription. We also define two novel loss-of-function mutations that are not truncations, but are missense point mutations that retain protein stability. These alleles allow us to show that the membrane-bound form of activated β-catenin does indeed depend on the endogenous protein. Further, this activity is dependent on the presence of the C-terminus-specific negative regulator Chibby. Our data clearly show that nuclear localization of β-catenin is in fact necessary for Wnt pathway activation.Keywords
This publication has 42 references indexed in Scilit:
- Requirement for a Nuclear Function of β-Catenin in Wnt SignalingMolecular and Cellular Biology, 2003
- The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt PathwayPLoS Biology, 2003
- Armadillo/β-catenin signals in the nucleus – proof beyond a reasonable doubt?Nature Cell Biology, 2003
- Wg/Wnt Signal Can Be Transmitted through Arrow/LRP5,6 and Axin Independently of Zw3/Gsk3β ActivityDevelopmental Cell, 2003
- Chromatin-specific regulation of LEF-1–β-catenin transcription activation and inhibition in vitroGenes & Development, 2001
- Control of β-Catenin StabilityMolecular Cell, 2000
- MECHANISMS OF WNT SIGNALING IN DEVELOPMENTAnnual Review of Cell and Developmental Biology, 1998
- Three-Dimensional Structure of the Armadillo Repeat Region of β-CateninPublished by Elsevier ,1997
- Drosophila α-Catenin and E-cadherin Bind to Distinct Regions of Drosophila ArmadilloJournal of Biological Chemistry, 1996
- Functional interaction of β-catenin with the transcription factor LEF-1Nature, 1996