Can superhorizon cosmological perturbations explain the acceleration of the universe?
- 3 October 2005
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 72 (8) , 083501
- https://doi.org/10.1103/physrevd.72.083501
Abstract
We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several “no go” theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes.Keywords
All Related Versions
This publication has 28 references indexed in Scilit:
- Type Ia Supernova Discoveries atz> 1 from theHubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy EvolutionThe Astrophysical Journal, 2004
- The Three‐Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky SurveyThe Astrophysical Journal, 2004
- Cosmological parameters from SDSS and WMAPPhysical Review D, 2004
- Twenty‐Three High‐Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample atz> 0.7The Astrophysical Journal, 2004
- New Constraints on ΩM, ΩΛ, andwfrom an Independent Set of 11 High‐Redshift Supernovae Observed with theHubble Space TelescopeThe Astrophysical Journal, 2003
- First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Preliminary Maps and Basic ResultsThe Astrophysical Journal Supplement Series, 2003
- Cosmological Results from High‐zSupernovaeThe Astrophysical Journal, 2003
- The 2dF Galaxy Redshift Survey: the bias of galaxies and the density of the UniverseMonthly Notices of the Royal Astronomical Society, 2002
- Measurements of Ω and Λ from 42 High‐Redshift SupernovaeThe Astrophysical Journal, 1999
- Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological ConstantThe Astronomical Journal, 1998