Multicomponent binary spreading process
- 18 January 2002
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review E
- Vol. 65 (2) , 026121
- https://doi.org/10.1103/physreve.65.026121
Abstract
I investigate numerically the phase transitions of two-component generalizations of binary spreading processes in one dimension. In these models pair annihilation explicit particle diffusion, and binary pair production processes compete with each other. Several versions with spatially different production are explored, and it is shown that for the cases and a phase transition occurs at zero production rate which belongs to the class of N-component, asymmetric branching and annihilating random walks, characterized by the order parameter exponent In the model with particle production a phase transition point can be located at which belongs to the class of one-component binary spreading processes.
Keywords
All Related Versions
This publication has 33 references indexed in Scilit:
- Non-equilibrium critical phenomena and phase transitions into absorbing statesAdvances in Physics, 2000
- Field theory of absorbing phase transitions with a nondiffusive conserved fieldPhysical Review E, 2000
- Universality Class of Absorbing Phase Transitions with a Conserved FieldPhysical Review Letters, 2000
- Nonequilibrium kinetic Ising models: phase transitions and universality classes in one dimensionBrazilian Journal of Physics, 2000
- Avalanche and spreading exponents in systems with absorbing statesPhysical Review E, 1999
- Wilson renormalization of a reaction–diffusion processPhysica A: Statistical Mechanics and its Applications, 1998
- Effects of pollution on critical population dynamicsPhysical Review A, 1989
- A new type of kinetic critical phenomenonJournal of Physics A: General Physics, 1984
- On phase transitions in Schlögl's second modelZeitschrift für Physik B Condensed Matter, 1982
- On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary stateZeitschrift für Physik B Condensed Matter, 1981