A Model for Binding of Structurally Diverse Natural Product Inhibitors of Protein Phosphatases PP1 and PP2A

Abstract
Protein phosphatases play significant roles in signal transduction pathways pertaining to cell proliferation, gene expression, and neurotransmission. Serine/threonine phosphatases PP1 and PP2A, which are closely related in primary structure (∼50%), are inhibited by a structurally diverse group of natural toxins. As part of our study toward understanding the mechanism of inhibition displayed by these toxins, we have developed research in two directions: (1) The standardization of an assay to be used in acquisition of the structure−activity relationship of inhibition data is reported. This nonradioactive assay affords detection levels of molecular phosphate released from a phosphorylated hexapeptide in subnanomolar quantities. The comparison of our IC50 values of these inhibitors against corresponding literature data provided validation for our method. (2) Computational analysis provided a global model for binding of these inhibitors to PP1. The natural toxins were shown to possess remarkably similar three-dimensional motifs upon superimposition and van der Waals minimization within the PP1 active site.