Distinct brain networks for adaptive and stable task control in humans
Top Cited Papers
- 26 June 2007
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (26) , 11073-11078
- https://doi.org/10.1073/pnas.0704320104
Abstract
Control regions in the brain are thought to provide signals that configure the brain's moment-to-moment information processing. Previously, we identified regions that carried signals related to task-control initiation, maintenance, and adjustment. Here we characterize the interactions of these regions by applying graph theory to resting state functional connectivity MRI data. In contrast to previous, more unitary models of control, this approach suggests the presence of two distinct task-control networks. A frontoparietal network included the dorsolateral prefrontal cortex and intraparietal sulcus. This network emphasized start-cue and error-related activity and may initiate and adapt control on a trial-by-trial basis. The second network included dorsal anterior cingulate/medial superior frontal cortex, anterior insula/frontal operculum, and anterior prefrontal cortex. Among other signals, these regions showed activity sustained across the entire task epoch, suggesting that this network may control goal-directed behavior through the stable maintenance of task sets. These two independent networks appear to operate on different time scales and affect downstream processing via dissociable mechanisms.Keywords
This publication has 52 references indexed in Scilit:
- Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shiftingNeuroImage, 2004
- Selection, Integration, and Conflict MonitoringNeuron, 2004
- The Small World of the Cerebral CortexNeuroinformatics, 2004
- The Architecture of Cognitive Control in the Human Prefrontal CortexScience, 2003
- The role of the anterior prefrontal cortex in human cognitionNature, 1999
- Collective dynamics of ‘small-world’ networksNature, 1998
- Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State FluctuationsNeuroImage, 1998
- Cerebellar Contributions to CognitionNeuron, 1996
- Functional connectivity in the motor cortex of resting human brain using echo‐planar mriMagnetic Resonance in Medicine, 1995
- The Attention System of the Human BrainAnnual Review of Neuroscience, 1990