Abstract
The gravitational wave sky is expected to have isolated bright sources superimposed on a diffuse gravitational wave background. The background radiation has two components: a confusion limited background from unresolved astrophysical sources; and a cosmological component formed during the birth of the universe. A map of the gravitational wave background can be made by sweeping a gravitational wave detector across the sky. The detector output is a complicated convolution of the sky luminosity distribution, the detector response function and the scan pattern. Here we study the general de-convolution problem, and show how LIGO (Laser Interferometric Gravitational Observatory) and LISA (Laser Interferometer Space Antenna) can be used to detect anisotropies in the gravitational wave background.

This publication has 0 references indexed in Scilit: