Abstract
The process of transganglionic transport was used to determine the pattern of primary afferent projections to the spinal cord and brainstem in the pigeon by (1) applying horseradish peroxidase (HRP) to various peripheral nerves in the leg or wing, (2) by injecting HRP-lectin into feather follicles of the wing or tail, and (3) by injecting HRP-lectin into various muscles of the leg or wing. In the spinal cord major peripheral nerves were represented heavily throughout the dorsal horn laminae but sparsely in more ventral laminae. The representations of these different nerves tended to be located in different mediolateral regions of the dorsal horn. Cutaneous nerves and feather follicles were represented predominantly in laminae I and II, and different sets of follicles were represented in different mediolateral regions of these laminae. Afferent labelling from muscles of the leg and wing was located in the lateral portion of the dorsal horn, predominantly in laminae I, II, and IV. In the caudal medulla the representation of the leg within the gracile nucleus was medial to and separate from that of the wing within the cuneate nucleus (Cu). The wing representation, however, extended laterally throughout the external cuneate nucleus (CuE) and lateral regions of the descending trigeminal tract. There was less evidence of separation of the limb representations at more rostral medullary levels where they both occupied predominantly CuE. Afferent labelling from cutaneous nerves and feather follicles was distributed lightly throughout Cu and CuE, and from muscles of both limbs primarily throughout CuE. There was also a small but specific projection from the limbs to the nucleus of the solitary tract, and from the wing to the principal sensory trigeminal nucleus. These results are discussed within a comparative context with a view to highlighting the similarities and differences in the pattern of primary afferent central projections in different vertebrates.