A three-dimensional neural recording array

Abstract
The authors describe a three-dimensional recording array for the high-density monitoring of neural activity throughout a volume of cortical tissue. The microassembly techniques used permit multiple multishank planar probes to be precisely configured to form 3D microstructures with probe spacings of 100 mu m or less. The probes are aligned through an orthogonal platform, also formed by silicon micromachining. High-density lead transfers between the probes and the platform are formed by selective electroplating and offer very low values of series resistance and shunt capacitance, with center-to-center lead spacings of 100 mu m or less. A 4*4 shank passive probe array has been found to penetrate pia arachnoid easily and is well accepted by the neural tissue. These assembly techniques also appear to be compatible with a variety of other microelectromechanical systems where 3D structures are required.

This publication has 8 references indexed in Scilit: