Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity
- 10 April 2008
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 47 (18) , 5182-5193
- https://doi.org/10.1021/bi8002204
Abstract
We have recently reported that CoASH is the major low-molecular weight thiol in Bacillus anthracis [Nicely, N. I., Parsonage, D., Paige, C., Newton, G. L., Fahey, R. C., Leonardi, R., Jackowski, S., Mallett, T. C., and Claiborne, A. (2007) Biochemistry46, 3234−3245], and we have now characterized the kinetic and redox properties of the B. anthracis coenzyme A-disulfide reductase (CoADR, BACoADR) and determined the crystal structure at 2.30 Å resolution. While the Staphylococcus aureus and Borrelia burgdorferi CoADRs exhibit strong preferences for NADPH and NADH, respectively, B. anthracis CoADR can use either pyridine nucleotide equally well. Sequence elements within the respective NAD(P)H-binding motifs correctly reflect the preferences for S. aureus and Bo. burgdorferi CoADRs, but leave questions as to how BACoADR can interact with both pyridine nucleotides. The structures of the NADH and NADPH complexes at ca. 2.3 Å resolution reveal that a loop consisting of residues Glu180-Thr187 becomes ordered and changes conformation on NAD(P)H binding. NADH and NADPH interact with nearly identical conformations of this loop; the latter interaction, however, involves a novel binding mode in which the 2′-phosphate of NADPH points out toward solvent. In addition, the NAD(P)H-reduced BACoADR structures provide the first view of the reduced form (Cys42-SH/CoASH) of the Cys42-SSCoA redox center. The Cys42-SH side chain adopts a new conformation in which the conserved Tyr367′-OH and Tyr425′-OH interact with the nascent thiol(ate) on the flavin si-face. Kinetic data with Y367F, Y425F, and Y367,425F BACoADR mutants indicate that Tyr425′ is the primary proton donor in catalysis, with Tyr367′ functioning as a cryptic alternate donor in the absence of Tyr425′.Keywords
This publication has 50 references indexed in Scilit:
- Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomesGenome Research, 2007
- A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrRProceedings of the National Academy of Sciences, 2007
- Structure of the Type III Pantothenate Kinase from Bacillus anthracis at 2.0 Å Resolution: Implications for Coenzyme A-Dependent Redox Biology,Biochemistry, 2007
- Structure of Coenzyme A−Disulfide Reductase from Staphylococcus aureus at 1.54 Å Resolution,Biochemistry, 2006
- Coot: model-building tools for molecular graphicsActa Crystallographica Section D-Biological Crystallography, 2004
- Sequence‐structure analysis of FAD‐containing proteinsProtein Science, 2001
- Use of TLS parameters to model anisotropic displacements in macromolecular refinementActa Crystallographica Section D-Biological Crystallography, 2001
- Refinement of Macromolecular Structures by the Maximum-Likelihood MethodActa Crystallographica Section D-Biological Crystallography, 1997
- [20] Processing of X-ray diffraction data collected in oscillation modePublished by Elsevier ,1997
- Methods used in the structure determination of bovine mitochondrial F1 ATPaseActa Crystallographica Section D-Biological Crystallography, 1996