Epigenetic transcriptional repression of cellular genes by a viral SET protein

Abstract
Viruses use various mechanisms to hijack cellular processes. Zhou and colleagues now describe a viral histone H3K27 methylase that modifies host histones and represses host target genes. Viruses recruit host proteins to secure viral genome maintenance and replication. However, whether they modify host histones directly to interfere with chromatin-based transcription is unknown. Here we report that Paramecium bursaria chlorella virus 1 (PBCV-1) encodes a functional SET domain histone Lys methyltransferase (HKMTase) termed vSET, which is linked to rapid inhibition of host transcription after viral infection. We show that vSET is packaged in the PBCV-1 virion, and that it contains a nuclear localization signal and probably represses host transcription by methylating histone H3 at Lys 27 (H3K27), a modification known to trigger gene silencing in eukaryotes. We also show that vSET induces cell accumulation at the G2/M phase by recruiting the Polycomb repressive complex CBX8 to the methylated H3K27 site in a heterologous system. vSET-like proteins that have H3K27 methylation activity are conserved in chlorella viruses. Our findings suggest a viral mechanism to repress gene transcription by direct modification of chromatin by PBCV-1 vSET.