Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates The GenBank accession numbers for the sequences reported in this paper are AY078355–AY078358.
- 1 June 2002
- journal article
- Published by Microbiology Society in Microbiology
- Vol. 148 (6) , 1655-1666
- https://doi.org/10.1099/00221287-148-6-1655
Abstract
The toxin-coregulated pilus (TCP) is a critical determinant of the pathogenicity of Vibrio cholerae. This bundle-forming pilus is an essential intestinal colonization factor and also serves as a receptor for CTXϕ, the filamentous phage that encodes cholera toxin (CT). TCP is a polymer of repeating subunits of the major pilin protein TcpA and tcpA is found within the Vibrio pathogenicity island (VPI). In this study genetic variation at the tcpA locus in toxigenic isolates of V. cholerae was investigated and three novel TcpA sequences from V. cholerae strains V46, V52 and V54, belonging to serogroups O141, O37 and O8, respectively, were identified. These novel tcpA alleles grouped into three distinct clonal lineages. The polymorphisms in TcpA were predominantly located in the carboxyl region of TcpA in surface-exposed regions of TCP fibres. Comparison of the genetic diversity among V. cholerae isolates at the tcpA locus with that of aldA, another locus within the VPI, and mdh, a chromosomal locus, revealed that tcpA sequences are far more diverse than these other loci. Most likely, this diversity is a reflection of diversifying selection in adaptation to the host immune response or to CTXϕ susceptibility. An assessment of the functional properties of the variant tcpA sequences in the non-O1 V. cholerae strains was carried out by analysing whether these strains could be infected by CTXϕ and colonize the suckling mouse. Similar to El Tor strains of V. cholerae O1, in vitro CTXϕ infection of these strains required the exogenous expression of toxT, suggesting that in these strains ToxT regulates TCP expression and that these TcpA variants can serve as CTXϕ receptors. All the V. cholerae non-O1 serogroup isolates tested were capable of colonizing the suckling mouse small intestine, suggesting that the different TcpA variants could function as colonization factors.Keywords
This publication has 46 references indexed in Scilit:
- Characterization of VPI Pathogenicity Island and CTXφ Prophage in Environmental Strains of Vibrio choleraeJournal of Bacteriology, 2001
- Comparison of Vibrio cholerae Pathogenicity Islands in Sixth and Seventh Pandemic StrainsInfection and Immunity, 2001
- Molecular Variation among Type IV Pilin ( bfpA ) Genes from Diverse Enteropathogenic Escherichia coli StrainsInfection and Immunity, 2000
- Molecular Characterization of a New Variant of Toxin-Coregulated Pilus Protein (TcpA) in a Toxigenic Non-O1/Non-O139 Strain of Vibrio choleraeInfection and Immunity, 2000
- Toxin-co-regulated pilus cluster in non-O1, non-toxigenicVibrio cholerae: evidence of a third allele of pilin geneFEMS Microbiology Letters, 1999
- A search for cholera toxin (CT), toxin coregulated pilus (TCP), the regulatory element ToxR and other virulence factors in non-O1/non-O139Vibrio choleraeMicrobial Pathogenesis, 1997
- A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fdStructure, 1997
- Organization of tcp, acf, and toxT genes within a ToxT‐dependent operonMolecular Microbiology, 1995
- TcpA pilin sequences and colonization requirements for O1 and O139 Vibrio choleraeMolecular Microbiology, 1994
- Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans.The Journal of Experimental Medicine, 1988