A Preconditioning Technique for Indefinite Systems Resulting from Mixed Approximations of Elliptic Problems

Abstract
This paper provides a preconditioned iterative technique for the solution of saddle point problems. These problems typically arise in the numerical approximation of partial differential equations by Lagrange multiplier techniques and/or mixed methods. The saddle point problem is reformulated as a symmetric positive definite system, which is then solved by conjugate gradient iteration. Applications to the equations of elasticity and Stokes are discussed and the results of numerical experiments are given.