EEG and MEG brain-computer interface for tetraplegic patients

Abstract
We characterized features of magnetoencephalographic (MEG) and electroencephalographic (EEG) signals generated in the sensorimotor cortex of three tetraplegics attempting index finger movements. Single MEG and EEG trials were classified offline into two classes using two different classifiers, a batch trained classifier and a dynamic classifier. Classification accuracies obtained with dynamic classifier were better, at 75%, 89%, and 91% in different subjects, when features were in the 0.5-3.0-Hz frequency band. Classification accuracies of EEG and MEG did not differ.