Estimating the Mean Annual Seed Production of Trees

Abstract
Intraspecifically, plant seed production is a function of both seed size (mean mass per seed) and plant size. In this paper we examined the interspecific relationship between the size of seeds and plants and the mean long—term annual seed production per tree. For canopy trees, we show that seed production is highly (inversely) correlated with the mean seed mass as a power law argument. Tree size (basal area or leaf mass) is directly proportional to seed production over a limited range. Analysis of seed production for herbaceous plants indicates a relationship similar to that for trees. As the exponent relating seed size to seed production is >°1.0, it follows that large—seeded plants produce more total annual crop mass than do small—seeded species. However, this is balanced by the greater investment in ancillary reproductive tissue by smaller seeded species. The results obtained here ought to be of theoretical and applied interest in, for example, stand—level simulations of population dynamics or for planning the optimal size and shape of clearcuts intended to be regenerated naturally.

This publication has 0 references indexed in Scilit: