Potential-dependent phase partitioning of fluorescent hydrophobic ions in phospholipid vesicles

Abstract
Summary Fluorescent, dansyl derivatives of triphenylalkylphosphonium ions have been synthesized and exhibit fluorescence intensities in small sonicated phospholipid vesicles that are dependent upon transmembrane potentials. The voltage-dependent fluorescence changes are a result of changes in quantum yield that accompany a voltage-dependent phase partitioning of the probe. This phase partitioning is easily quantitated by calibrating the intensities of totally membrane-associated and aqueous probe. The voltage-dependence is well accounted for by a simple thermodynamic model and allows an estimation of potentials from fluorescence intensities in small vesicle systems.