The extracellular matrix of lip wounds in fetal, neonatal and adult mice
Open Access
- 1 June 1991
- journal article
- Published by The Company of Biologists in Development
- Vol. 112 (2) , 651-668
- https://doi.org/10.1242/dev.112.2.651
Abstract
Wound healing in the fetus occurs rapidly, by a regenerative process and without an inflammatory response, resulting in complete restitution of normal tissue function. By contrast, in the adult, wounds heal with scar formation, which may impair function and inhibit further growth. The cellular mechanisms underlying these differing forms of wound healing are unknown but the extracellular matrix (ECM), through its effects on cell function, may play a key role. We have studied the ECM in upper lip wounds of adult, neonatal and fetal mice at days 14, 16 and 18 of gestation. The spatial and temporal distribution of collagen types I, III, IV, V and VI, fibronectin, tenascin, laminin, chondroitin and heparan sulphates were examined immunohistochemically. Results from the fetal groups were essentially similar whilst there were distinct differences between fetus, neonate and adult. Fibronectin was present at the surface of the wound in all groups at 1 h post-wounding. Tenascin was also present at the wound surface but the time at which it was first present differed between fetus (1 h), neonate (12 h) and adult (24 h). The time of first appearance paralleled the rate of wound healing which was most rapid in the fetus and slowest in the adult. Tenascin inhibits the cell adhesion effect of fibronectin and during development the appearance of tenascin correlates with the initiation of cell migration. During wound healing the appearance of tenascin preceded cell migration and the rapid closure of fetal wounds may be due to the early appearance of tenascin in the wound. Collagen types I, III, IV, V and VI were present in all three wound groups but the timing and pattern of collagen deposition differed, with restoration of the normal collagen pattern in the fetus and a scar pattern in the adult. This confirms that lack of scarring in fetal wounds is due to the organisation of collagen within the wound and not simply lack of collagen formation. The distribution of chondroitin sulphate differed between normal fetal and adult tissues and between fetal and adult wounds. Its presence in the fetal wound may alter collagen fibril formation. No inflammatory response was seen in the fetal wounds. The differences in the ECM of fetal and adult wounds suggests that it may be possible to alter the adult wound so that it heals by a fetal-like process without scar formation, loss of tissue function or restriction of growth.Keywords
This publication has 66 references indexed in Scilit:
- Successful Repair in Utero of a Fetal Diaphragmatic Hernia after Removal of Herniated Viscera from the Left ThoraxNew England Journal of Medicine, 1990
- Fetal Wound HealingPlastic and Reconstructive Surgery, 1990
- Exogenous tenascin inhibits mesodermal cell migration during amphibian gastrulationDevelopmental Biology, 1990
- Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat.The Journal of cell biology, 1989
- Extracellular matrix-cytoskeleton interactions in locomoting embryonic cellsProtoplasma, 1988
- Fetal response to injury in the rabbitJournal of Pediatric Surgery, 1987
- Topographies of extracytoplasmic compartments in developing chick tendon fibroblastsJournal of Ultrastructure and Molecular Structure Research, 1986
- Mouse embryos develop normally Exo uteroJournal of Experimental Zoology, 1986
- In Utero Cleft Lip Repair in A/J MicePlastic and Reconstructive Surgery, 1985
- Wound healing in the fetal lambJournal of Pediatric Surgery, 1971