Hierarchical structure and the prediction of missing links in networks
Top Cited Papers
- 1 May 2008
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 453 (7191) , 98-101
- https://doi.org/10.1038/nature06830
Abstract
Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems in many branches of science1,2,3. Recent studies suggest that networks often exhibit hierarchical organization, in which vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales. In many cases the groups are found to correspond to known functional units, such as ecological niches in food webs, modules in biochemical networks (protein interaction networks, metabolic networks or genetic regulatory networks) or communities in social networks4,5,6,7. Here we present a general technique for inferring hierarchical structure from network data and show that the existence of hierarchy can simultaneously explain and quantitatively reproduce many commonly observed topological properties of networks, such as right-skewed degree distributions, high clustering coefficients and short path lengths. We further show that knowledge of hierarchical structure can be used to predict missing connections in partly known networks with high accuracy, and for more general network structures than competing techniques8. Taken together, our results suggest that hierarchy is a central organizing principle of complex networks, capable of offering insight into many network phenomena.Keywords
All Related Versions
This publication has 26 references indexed in Scilit:
- Extracting the hierarchical organization of complex systemsProceedings of the National Academy of Sciences, 2007
- Hierarchy and feedback in the evolution of the Escherichia coli transcription networkProceedings of the National Academy of Sciences, 2007
- Uncovering the overlapping community structure of complex networks in nature and societyNature, 2005
- Prediction of physical protein–protein interactionsPhysical Biology, 2005
- Functional cartography of complex metabolic networksNature, 2005
- Accuracy and Scaling Phenomena in Internet MappingPhysical Review Letters, 2005
- Finding community structure in very large networksPhysical Review E, 2004
- Statistical mechanics of complex networksReviews of Modern Physics, 2002
- A comprehensive two-hybrid analysis to explore the yeast protein interactomeProceedings of the National Academy of Sciences, 2001
- Structure of the Parasitoid Communities of Grass-Feeding Chalcid WaspsJournal of Animal Ecology, 1995