Comparison of Scanning Laser Polarimetry Using Variable Corneal Compensationand Retinal Nerve Fiber Layer Photography for Detection of Glaucoma

Abstract
Objective To compare retinal nerve fiber layer (RNFL) measurements obtained withscanning laser polarimetry (SLP) using variable corneal polarization compensationwith standard red-free photography for detection of RNFL damage in glaucoma. Methods This observational, cross-sectional study included 1 eye of each of42 patients with open-angle glaucoma, 32 patients suspected of having glaucoma,and 40 healthy subjects. The RNFL measurements using SLP with variable cornealcompensation were obtained within 3 months of red-free photographs. Two independentobservers graded RNFL photographs using a standardized protocol. Superiorand inferior hemiretinas were scored separately, and a global score was obtainedby averaging scores from each hemiretina. Main Outcome Measures The RNFL photography scores were compared with RNFL thickness measurementsobtained with SLP. The receiver operating characteristic (ROC) curves wereconstructed to assess the abilities of the different methods to differentiateglaucoma patients from healthy subjects. Results The RNFL thickness decreased with increased RNFL damage as assessedby photographs in both hemiretinas (R2 =15%-47%). The area under the ROC curve for the best SLP parameter, Nerve FiberIndicator, was significantly greater than the area under the ROC curve forthe global RNFL photography score (0.91 vs 0.84, P =.03). Conclusions A moderate correlation was found between RNFL thickness measurementsobtained with SLP and RNFL scores from red-free photographs. Compared withsemiquantitative RNFL photography scores, the best SLP parameter had a higherdiagnostic accuracy to separate glaucoma patients from healthy subjects.

This publication has 4 references indexed in Scilit: