Changes in Protein Synthesis Induced in Tomato by Chilling
Open Access
- 1 October 1988
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 88 (2) , 454-461
- https://doi.org/10.1104/pp.88.2.454
Abstract
Impaired chloroplast function is responsible for nearly two-thirds of the inhibition of net photosynthesis caused by dark chilling in tomato (Lycopersicon esculentum Mill.). Yet the plant can eventually recover full photosynthetic capacity if it is rewarmed in darkness at high relative humidity. As a means of identifying potential sites of chilling injury in tomato, we monitored leaf protein synthesis in chilled plants during this rewarming recovery phase, since changes in the synthesis of certain proteins might be indicative of damaged processes in need of repair. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins pulse labeled with [35S]methionine revealed discrete changes in the pattern of protein synthesis as a result of chilling. A protein of Mr = 27 kilodaltons (kD), abundantly synthesized by unchilled plants, declined to undetectable levels in chilled plants. Reillumination restored the synthesis of this protein in plants rewarmed for 8 hours. Peptide mapping analysis showed the 27 kD protein to be the major chlorophyll a/b binding protein of the photosystem II light-harvesting complex (LHCP-II). The identity of this protein was confirmed by its immunoprecipitation from leaf extracts by a monoclonal antibody specific for the major LHCP-II species. While chilling abolished the synthesis of the major LHCP-II species, it also induced the synthesis of an entirely new protein of Mr = 35 kD. The protein was synthesized on cytoplasmic ribosomes, and two-dimensional polyacrylamide gel electrophroesis showed it to exist as a single isoelectric species. This chilling-induced 35 kD protein is structurally distinct from the 27 kD LHCP-II and appears to be synthesized specifically in response to low temperature. While the 35 kD protein was found not to be associated with the chloroplast thylakoid membrane, chilling did cause selective changes in thylakoid membrane protein synthesis. The synthesis of two unidentified proteins, Mr = 14 and 41 kD, and the β-subunit of the chloroplast coupling factor were substantially reduced after chilling. These losses may provide clues as to the causes of the overall reduction in net photosynthesis caused by chilling.This publication has 35 references indexed in Scilit:
- Evidence that a Chloroplast Surface Protein Is Associated with a Specific Binding Site for the Precursor to the Small Subunit of Ribulose-1,5-Bisphosphate CarboxylasePlant Physiology, 1987
- Demonstration of transcriptional regulation of specific genes by phytochrome actionProceedings of the National Academy of Sciences, 1984
- [8] Immunoprecipitation of proteins from cell-free translationsPublished by Elsevier ,1983
- Cloned DNA sequences complementary to mRNAs encoding precursors to the small subunit of ribulose-1,5-bisphosphate carboxylase and a chlorophyll a/b binding polypeptideProceedings of the National Academy of Sciences, 1981
- Biosynthetic pathways of two polypeptide subunits of the light-harvesting chlorophyll a/b protein complex.The Journal of cell biology, 1981
- Biosynthesis of the Light‐Harvesting Chlorophyll a/b ProteinEuropean Journal of Biochemistry, 1981
- “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein AAnalytical Biochemistry, 1981
- Structural similarities between the major polypeptides of thylakoid membranes from Chlamydomonas reinhardtiiArchives of Biochemistry and Biophysics, 1980
- A simplification of the protein assay method of Lowry et al. which is more generally applicableAnalytical Biochemistry, 1977
- Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis.Journal of Biological Chemistry, 1977