Activation of brain hexokinase by magnesium ions and by magnesium ion–adenosine triphosphate complex

Abstract
1. An alternative explanation for the kinetic data obtained by Bachelard (1971) for the brain hexokinase reaction is presented. 2. Apparently sigmoidal saturation curves for MgATP2− based upon Bachelard's (1971) studies can be corrected to hyperbolic curves by use of a stability constant for MgATP2− complex formation. 3. A number of other effects related to the concentration-dependent stability of the MgATP2− complex and to the presence of the inhibitory free uncomplexed ATP4− concentration are also explained in terms of a non-allosteric role for either Mg2+ or MgATP2− fully consistent with a number of previous reports on this enzyme. 4. A brief discussion of the validity of Hill plots in studies of multisubstrate co-operative enzymes is presented. 5. A simple model is presented that demonstrates how enzymes obeying Michaelis–Menten kinetics can demonstrate sigmoidal velocity responses if the true substrate of the reaction is the metal–substrate complex.