Abstract
Properties of organic farming composts were examined during the composting process: pH, electrical conductivity, C/N ratio, total N content, NH4+ content, NO3−content, ash content, and organic matter content. In addition to these properties the respiration rate, microbial population counts, hydrolysis of Fluorescein Diacetate (FDA) and the activity of the enzyme amidase were studied. Composts at several stages of maturity were incubated in soil, and their N mineralization rates were measured. The end of the thermophilic stage was characterized by irreversible decrease in pile temperature to under 55°C, followed by stabilization of the chemical properties. This stage in the composting process is also characterized by decrease in CO2 evolution rate, changes in microbial populations and specific patterns in FDA hydrolysis and amidase activity. Based on this evidence, we suggest that biological parameters can be considered as indicators for compost maturity.