Transforming growth factor β gene maps to human chromosome 19 long arm and to mouse chromosome 7

Abstract
Transforming growth factors (TGF) are defined as biologically active polypeptides which reversibly confer the transformed phenotype onto untransformed cultured cells. They have been subdivided into two classes: type α and type β TGFs. TGF-β acts synergistically with TGF-α in inducing phenotypic transformation. TGF-β can also act as negative autocrine growth factor. A human 1050-bp EcoRI cDNA fragment was used to map the human locus for TGF-β by Southern blotting of DNA prepared from 17 human × Chinese hamster somatic cell hybrids. The humanspecific restriction fragments segregated with human chromosome 19 in all of 14 informative hybrids. All other human chromosomes were discordant with the TGF-β bands in at least four hybrids. After in situ hybridization of the tritiated TGF-β probe to normal human metaphase spreads, 151 silver grains were scored in 54 cells. Of 24 grains over chromosome 19, 16 grains (11%) lay over region 19q13.1 → q13.3. Of the 54 cells analyzed, 16 (30%) had label over region 19q13.1 → q13.3. Thus,TGFB is assigned to chromosome 19, subbands q13.1 → q13.3. TheTgf- β locus in the mouse was mapped to chromosome 7 by hybridizing a murine cDNA probe to a Chinese hamster × mouse hybrid panel. Human chromosome 19 and proximal mouse chromosome 7 share another four homologous loci.

This publication has 41 references indexed in Scilit: