Abstract
The maximum likelihood (ML) equations calculated from censored normal samples do not admit explicit solutions. A principle of modification is given and modified maximum likelihood (MML) equations, which admit explicit solutions, are defined. This approach makes it possible to tackle the hitherto unresolved problem of estimating and testing hypotheses about group-effects in one-way classification experimental designs based on Type I censored normal samples. The MML estimators of group-effects are obtained as explicit functions of sample observations and shown to be asymptotically identical with the ML estimators and hence BAN (best asymptotic normal) estimators. A statistic t is defined to test a linear contrast of group-effects and shown to be asymptotically normally distributed. A numerical example is presented which illustrates the procedure.