Prompt multigluon production in high-energy collisions from singular Yang-Mills solutions

Abstract
We study non-perturbative parton-parton scattering in the Landau method using singular O(3) symmetric solutions to the Euclidean Yang-Mills equations. These solutions combine instanton dynamics (tunneling) and overlap (transition) between incoming and vacuum fields. We derive a high-energy solution at small Euclidean times, and assess its susequent escape and decay into gluons in Minkowski space-time. We describe the spectrum of the {\it outgoing} gluons and show that it is related through a particular rescaling to the Yang-Mills sphaleron explosion studied earlier. We assess the number of {\it incoming} gluons in the same configuration, and argue that the observed scaling is in fact more general and describes the energy dependence of the spectra and multiplicities at {\it all} energies. Applications to hadron-hadron and nucleus-nucleus collisions are discussed elsewhere
All Related Versions