Single-Site Approximations in the Electronic Theory of Simple Binary Alloys

Abstract
A single-band model Hamiltonian is used to describe the electronic structure of a three-dimensional disordered binary alloy. Several common theories based on the single-site approximation in a multiple-scattering description are compared with exact results for this Hamiltonian. The coherent-potential theory of Soven and others is shown to be the best of these. Within the appropriate limits, it exhibits dilute-alloy, virtual-crystal, and well separated impurity-band behavior. Hubbard and Onodera's and Toyozawa's simple model density of states is employed in numerical calculations for a wide variety of concentrations and scattering-potential strengths. Explicit results are exhibited for the total density of states, the partial density contributed by each component, and such k-dependent properties as the Bloch-wave spectral density and the distribution function. These illustrate the general conclusions as well as the limitations of the quasiparticle description.

This publication has 18 references indexed in Scilit: