Population modelling in drug development

Abstract
In this paper we discuss the vital role that population (hierarchical) modelling can play within the drug development process. Specifically, population pharmacokinetic/pharmacodynamic models can provide reliable predictions of an individualized dose-exposure-response relationship. A predictive model of this kind can be used to simulate and hence design clinical trials, find initial dosage regimens satisfying an optimality criterion on the population distribution of responses, and individualized regimens satisfying such a criterion conditional on individual features, such as sex, age, etc. Throughout we emphasize prediction and advocate mechanistic as opposed to empirical modelling, and argue that the Bayesian approach is particularly natural in this setting.