Functionalized Carbosilane Dendritic Species as Soluble Supports in Organic Synthesis

Abstract
A new methodology, which is compatible with the use of reactive organometallic reagents, has been developed for the use of carbosilane dendrimers as soluble supports in organic synthesis. Hydroxy-functionalized dendritic carbosilanes Si[CH2CH2CH2SiMe2(C6H4CH(R)OH)]4 (G0-OH, R = H or (S)-Me) and Si[CH2CH2CH2Si[CH2CH2CH2SiMe2(C6H4CH(R)OH)]3]4 (G1-OH, R = H or (S)-Me) were prepared and subsequently converted into the esters Si[CH2CH2CH2SiMe2(C6H4CH(R)OC(O)CH2Ph)]4 (R = H or (S)-Me) and Si[CH2CH2CH2Si[CH2CH2CH2SiMe2(C6H4CH(R)OC(O)CH2C6H4R‘)]3]4 (R = H and R‘ = H or R = (S)-Me and R‘ = H or R = H and R‘ = Br). As an example the latter compound was functionalized under Suzuki conditions. The functionalized carboxylic acid was obtained in high yield after cleavage from the dendritic support. Moreover, the ester functionalized dendrimers were converted to the corresponding zinc enolates followed by a condensation reaction with an imine to a β-lactam in excellent yield and purity. Furthermore, it was demonstrated that a small combinatorial library of β-lactams could be prepared starting from a carbosilane dendrimer functionalized with different ester moieties. These results show that carbosilane dendrimers can be applied as soluble substrate carriers for the generation of low molecular weight organic molecules. In combination with nanofiltration techniques, separation and recycling of the dendrimers can be realized.

This publication has 36 references indexed in Scilit: