A numerical simulation of Kelvin-Helmholtz waves of finite amplitude

Abstract
A number of initial- and boundary-value problems for the Boussinesq equations are solved by a finite-difference technique, in an attempt to see how a stably-stratified horizontal shear layer rolls up into horizontally periodic billows of concentrated vorticity, such as are frequently observed in the atmosphere and oceans. This paper describes the methods, results and accuracy of the numerical simulations. The results are further analysed and approximately reproduced by a simple semi-analytic model in Corcos & Sherman (1976).