Identification of Harper-Cawston Factor as Thymidine Phosphorylase and Removal from Media of Substances Interfering with Susceptibility Testing to Sulfonamides and Diaminopyrimidines

Abstract
Rich media support the growth of bacteria in the presence of concentrations of sulfonamides and diaminopyrimidines that are highly inhibitory when the organisms are grown on minimal media. Many such rich media can be made more suitable for susceptibility testing by the incorporation of lysed horse blood. Harper and Cawston characterized the active substance, Harper-Cawston factor (HCF), and later studies indicated it to be a protein. It has now been identified as thymidine phosphorylase. The identification follows from the identical purification pattern of HCF and thymidine phosphorylase activities from horse blood to a high degree of purity. Blood of goats, sheep, oxen, geese, chickens, cows, dogs, rats, and humans had neither biological activity. The identification of HCF as thymidine phosphorylase is consistent with the earlier findings of Koch and Burchall (1971) that most of the interfering effects of rich media could be accounted for by their thymidine contents, and that thymidine is much more active in this respect than is thymine.