A probabilistic method to detect regulatory modules

Abstract
The discovery of cis-regulatory modules in metazoan genomes is crucial for understanding the connection between genes and organism diversity. We develop a computational method that uses Hidden Markov Models and an Expectation Maximization algorithm to detect such modules, given the weight matrices of a set of transcription factors known to work together. Two novel features of our probabilistic model are: (i) correlations between binding sites, known to be required for module activity, are exploited, and (ii) phylogenetic comparisons among sequences from multiple species are made to highlight a regulatory module. The novel features are shown to improve detection of modules, in experiments on synthetic as well as biological data.

This publication has 0 references indexed in Scilit: