Abstract
The exquisite specificity of monoclonal antibodies (MAb) has long provided the potential for creating new reagents for the in vivo delivery of therapeutic drugs or toxins to defined cellular target sites or improved methods of diagnosis. However, many difficulties associated with their production, affinity, specificity, and use in vivo have largely confined their application to research or in vitro diagnostics. This situation is beginning to change with the recent developments in the applied molecular techniques that allow the engineering of the genes that encode antibodies rather than the manipulation of the intact antibodies themselves. Techniques, such as the polymerase chain reaction, have provided essential methods with which to generate and modify the genetic constituents of antibodies, allow their conjugation to toxins or drugs, provide ways of humanizing murine antibodies, and allow discrete modular antigen binding components to be produced. More recent developments of in vitro expression systems and powerful phage surface display technologies will without doubt play a major role in future antibody engineering and in the successful development of new diagnostic and therapeutic antibody-based reagents.