Photophysical and photochemical processes in zeolite cavities: The effects of ion-exchanged alkalimetal cations on the excited states of xanthone and the photolysis of 2-pentanone

Abstract
The characteristics properties of xanthone phosphorescence and of 2-pentanone photolysis in alkali metal cation-exchanged zeolites have been investigated to clarify the effect of the micro-environment of host-adsorbents on the photophysical and photochemical properties of guest-molecules in restricted void spaces. The enhancement of the phosphorescence yields of xanthone included in zeolites is observed by changing the exchangeablealkali metal cation from Li+ to Cs+. Simultaneously, the phosphorescence lifetimes were observed to continuously shorten by changing the cation from Li+ to Cs+. These results suggest that the external heavy-atom effect deriving from the alkali metal cations on the singlet-triplet transitions of xanthone molecules stabilized on alkali metal cations in the order of Li+, Na+, K+, Rb+, and Cs+. The yields for the photolysis of 2-pentanone included in zeolites increase with changing the alkali metal cation from Li+ to Cs+. IR investigations of the adsorption state of 2-pentanone indicate that strength of the interaction between the alkali metal cations and 2-pentanones decreases by changing the cation from Li+ to Cs+, which results in a longer lifetime of 2-pentanone. The selectivity of propylene formation is dramatically increased by changing the cation from Li+ to Cs+. The enhanced formation of propylene is asociated with the hydrogen absorption from propyl radicals by lattice oxygen, their basicity increasing by changing the cation from Li+ to Cs+. Thus, these changes in the zeolite cavities modified by exchanging cations caused significant effects not only on the excited state but also on the following chemical reactions of ketones.

This publication has 23 references indexed in Scilit: