Platelet-Derived Growth Factor Induces Phosphorylation of Multiple JAK Family Kinases and STAT Proteins
Open Access
- 1 April 1996
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 16 (4) , 1759-1769
- https://doi.org/10.1128/mcb.16.4.1759
Abstract
Receptors for interferons and other cytokines signal through the action of associated protein tyrosine kinases of the JAK family and latent cytoplasmic transcription factors of the STAT family. Genetic and biochemical analysis of interferon signaling indicates that activation of STATs by interferons requires two distinct JAK family kinases. Loss of either of the required JAKs prevents activation of the other JAK and extinguishes STAT activation. These observations suggest that JAKs provide interferon receptors with a critical catalytic signaling function and that at least two JAKs must be incorporated into an active receptor complex. JAK and STAT proteins are also activated by ligands such as platelet-derived growth factor (PDGF), which act through receptors that possess intrinsic protein tyrosine kinase activity, raising questions about the role of JAKs in signal transduction by this class of receptors. Here, we show that all three of the ubiquitously expressed JAKs--JAK1, JAK2, and Tyk2--become phosphorylated on tyrosine in both mouse BALB/c 3T3 cells and human fibroblasts engineered to express the PDGF-beta receptor. All three proteins are also associated with the activated receptor. Through the use of cell lines each lacking an individual JAK, we find that in contrast to interferon signaling, PDGF-induced JAK phosphorylation and activation of STAT1 and STAT3 is independent of the presence of any other single JAK but does require receptor tyrosine kinase activity. These results suggests that the mechanism of JAK activation and JAK function in signaling differs between receptor tyrosine kinases and interferon receptors.Keywords
This publication has 61 references indexed in Scilit:
- Phosphorylation and Activation of the DNA Binding Activity of Purified Stat1 by the Janus Protein-tyrosine Kinases and the Epidermal Growth Factor ReceptorJournal of Biological Chemistry, 1995
- Signal Transduction: Just another signalling pathwayCurrent Biology, 1994
- Stat3: a STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6Science, 1994
- Cytokine signal transductionPublished by Elsevier ,1994
- Ras-Independent Growth Factor Signaling by Transcription Factor Tyrosine PhosphorylationScience, 1993
- Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoterCell, 1993
- The alphas, betas, and kinases of cytokine receptor complexesCell, 1993
- Identification of JAK2 as a growth hormone receptor-associated tyrosine kinaseCell, 1993
- JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietinCell, 1993
- A protein tyrosine kinase in the interferon αβ signaling pathwayCell, 1992