Effect of differences in optical properties of intermediate oxygenated species of hemoglobin A0 on Adair constant determination

Abstract
Careful evaluation of the so-called isosbestic properties of oxygenated and deoxygenated hemoglobin spectra demonstrates that the spectral changes are not strictly linear with respect to the degree of saturation. In order to quantify the extent of nonlinearity, optical measurements of O2 binding to human hemoglobin were made at different wavelengths in the Soret region approaching the presumed isosbestic point. The results indicate that the extinction coefficient of intermediate oxygenated hemoglobin is 1% less than that of the fully oxygenated hemoglobin, with a resulting 3% (.+-.0.15%) nonlinearity effect on measurements taken at the peak of the oxygenated hemoglobin spectrum (414 nm). The lack of isosbestic conditions allows one to investigate the functional properties of the oxygenated intermediates directly. The small difference in the absorbance of different oxygenated species has practically no influence on the determination of Adair constants at wavelengths removed from the critical isosbestic region.

This publication has 2 references indexed in Scilit: