The MRG Domain Mediates the Functional Integration of MSL3 into the Dosage Compensation Complex

Abstract
The male-specific-lethal (MSL) proteins in Drosophila melanogaster serve to adjust gene expression levels in male flies containing a single X chromosome to equal those in females with a double dose of X-linked genes. Together with noncoding roX RNA, MSL proteins form the “dosage compensation complex” (DCC), which interacts selectively with the X chromosome to restrict the transcription-activating histone H4 acetyltransferase MOF (males-absent-on-the-first) to that chromosome. We showed previously that MSL3 is essential for the activation of MOF's nucleosomal histone acetyltransferase activity within an MSL1-MOF complex. By characterizing the MSL3 domain structure and its associated functions, we now found that the nucleic acid binding determinants reside in the N terminus of MSL3, well separable from the C-terminal MRG signatures that form an integrated domain required for MSL1 interaction. Interaction with MSL1 mediates the activation of MOF in vitro and the targeting of MSL3 to the X-chromosomal territory in vivo. An N-terminal truncation that lacks the chromo-related domain and all nucleic acid binding activity is able to trigger de novo assembly of the DCC and establishment of an acetylated X-chromosome territory.