Mitochondrial calcium spiking: A transduction mechanism based on calcium‐induced permeability transition involved in cell calcium signalling

Abstract
We report reversible Ca(2+)-induced Ca2+ release from mitochondria, which takes the form of Ca2+ spikes. Mitochondrial Ca2+ spiking is an all-or-none process with a threshold dependence on both the frequency and the amplitude of the Ca2+ pulses used as stimuli. This spiking relies on the transient operation of the mitochondrial permeability transition pore, and is initiated--in a threshold-dependent manner--with inositol-triphosphate-mediated Ca2+ responses on permeabilized cells. Evidence that mitochondrial Ca(2+)-induced Ca2+ release contributes to inositol-triphosphate-mediated Ca2+ responses in intact cells is also reported.