Abstract
Supposing a given collection $y_1, \cdots, y_N$ of i.i.d. random points on a Riemannian manifold, we discuss how to estimate the underlying distribution from a differential geometric viewpoint. The main hypothesis is that the manifold is closed and that the distribution is (sufficiently) smooth. Under such a hypothesis a convergence arbitrarily close to the $N^{-1/2}$ rate is possible, both in the $L_2$ and the $L_\infty$ senses.

This publication has 0 references indexed in Scilit: