Abstract
The class of finite groups having a subgroup of order 4 which is its own centralizer has been studied by Suzuki [9], Gorenstein and Walter [6], and the present author [11]. The main purpose of this paper is to strengthen Theorem 5 of [11] by using an early result of Zassenhaus [12]. In particular, we find all groups of the class which are core-free, i.e. which have no nontrivial normal subgroup of odd order. As an application, we make a determination of a certain class of primitive permutation groups.

This publication has 8 references indexed in Scilit: