Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme
- 1 March 1995
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 306 (2) , 589-597
- https://doi.org/10.1042/bj3060589
Abstract
Recombinant human phenylalanine hydroxylase (hPAH) was produced in high yields in Escherichia coli using the pET and pMAL expression vectors. In the pMAL system, hPAH was fused through the target sequences of the restriction protease factor Xa (IEGR) or enterokinase (D4K) to the C-terminal end of the highly expressed E. coli maltose-binding protein (MBP). The recombinant hPAH, recovered in soluble forms, revealed a high specific activity even in crude extracts and was detected as a homogeneous band by Western-blot analysis using affinity-purified polyclonal rabbit anti-(rat PAH) antibodies. The enzyme expressed in the pET system was subject to limited proteolysis by host cell proteases and was difficult to purify with a satisfactory yield. By contrast, when expressed as a fusion protein in the pMAL system, hPAH was resistant to cleavage by host cell proteases and was conveniently purified by affinity chromatography on an amylose resin. Catalytically active tetramer-dimer (in equilibrium) forms of the fusion protein were separated from inactive, aggregated forms by size-exclusion h.p.l.c. After cleavage by restriction protease, factor Xa or enterokinase, hPAH was separated from uncleaved fusion protein, MBP and restriction proteases by hydroxylapatite or ion-exchange (DEAE) chromatography. The yield of highly purified hPAH was approx. 10 mg/l of culture. The specific activity of the isolated recombinant enzyme was high (i.e. 1440 nmol of tyrosine.min-1.mg-1 with tetrahydrobiopterin as the cofactor) and its catalytic and physicochemical properties are essentially the same as those reported for the enzyme isolated from human liver. The recombinant enzyme, both as a fusion protein and as purified full-length hPAH, was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase. The phosphorylated from of hPAH electrophoretically displayed an apparently higher molecular mass (approximately 51 kDa) than the non-phosphorylated (approximately 50 kDa) form.Keywords
This publication has 32 references indexed in Scilit:
- The Phenylalanine Hydroxylating SystemPublished by Wiley ,1993
- Membrane-bound phenylalanine hydroxylase of human liverJournal of Hepatology, 1992
- Molecular basis of phenylketonuria and related hyperphenylalaninemias: Mutations and polymorphisms in the human phenylalanine hydroxylase geneHuman Mutation, 1992
- An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding proteinGene, 1988
- Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding proteinGene, 1988
- Purification of phenylalanine hydroxylase from human adult and foetal livers with a monoclonal antibodyBiochemical and Biophysical Research Communications, 1985
- Amino acid sequence at the phosphorylated site of rat liver phenylalanine hydroxylase and phosphorylation of a corresponding synthetic peptideBiochemical and Biophysical Research Communications, 1980
- The isolation, properties, and assay of phenylalanine hydroxylase from human and rat liverBiochemical Medicine, 1976
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970