AMINO ACID METABOLISM IN GLIAL CELLS: HOMEOSTATIC REGULATION OF INTRA‐ and EXTRACELLULAR MILIEU BY C‐6 GLIOMA CELLS

Abstract
Abstract— The amino acid and carbohydrate metabolism of confluent cultures of C‐6 glioma cells has been investigated. It was observed that the presence of glutamine in the incubation fluid was essential to maintain high glutamine levels in the cells during a 2 h incubation. When cells were incubated in a cerebrospinal fluid‐like medium glutamate, glutamine, aspartate and γ‐aminobutyrate (GABA) levels were comparable to those occurring in whole forebrain of adult rat in vivo. Glucose uptake was high, approx 1 μmol/mg protein/2 h, 50% of which was accounted for by lactate production. Of the remaining glucose uptake a substantial proportion was unaccounted for by known oxygen‐coupled citric acid cycle flux, or glycogen or amino acid synthesis. Interestingly, the cells released into the medium significant amounts of the neuroinhibitory amino acids, GABA and glycine, and rapidly cleared the medium of the neuroexcitatory amino acids glutamate and aspartate. Metabolism of [2‐14C]glucose and [3H]acetate by the cells indicated rapid labelling of the glutamate and aspartate pools of the cells by glucose in 1 h, but the relative specific activities of glutamine and GABA were much lower. The metabolism of tracer concentrations of [3H]acetate to glutamate by the cells indicated greater dilution of this isotope compared to that of labelled glucose. However, the ratio of 3H to 14C radioactivity in glutamate and other amino acids was similar to that in the mixture of glucose and acetate added to the medium. Therefore, some active route of acetate metabolism which communicates metabolically with the route of glucose metabolism to glutamate appears to exist in the cells. Significant acetate activation and fatty acid turnover would explain the present results. Some of the amino acid labelling patterns observed in these studies are not consistent with these glial‐like cells behaving as models for the small compartment of amino acid metabolism in brain. Enzyme measurements corroborated the metabolic studies. Glutamate decarboxylase activity was 3–10% of the level found in whole brain. GABA transaminase was also low compared to brain as was glutamine synthetase. Glutamate dehydrogenase was present at levels equal to or higher than those of whole brain.

This publication has 36 references indexed in Scilit: