Preparation of Stable Isotope-Labeled 2-Nitrobenzaldehyde Derivatives of Four Metabolites of Nitrofuran Antibiotics and Their Comprehensive Characterization by UV, MS, and NMR Techniques

Abstract
A convenient method is presented for the preparation of the carbon-13-labeled 2-nitrobenzaldehyde derivatives of the nitrofuran metabolites 3-amino-2-oxazolidinone (AOZ), semicarbazide (SC), 1-aminohydantoin (AH), and 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), with the purpose of using them as internal standards for the quantification of trace levels of nitrofuran residues by liquid chromatography−tandem mass spectrometry in foods of animal origin. The synthesis encompasses the nitration of [1,2,3,4,5,6-13C6]toluene prior to chromyl compound-mediated oxidation of the methyl group into the corresponding aldehyde. The four metabolites of nitrofuran antibiotics were derivatized independently with the resulting ring-labeled 2-nitrobenzaldehyde (NBA) to obtain the target compounds. Both the isotopically enriched and native substances were used to perform a comprehensive fragmentation study by electrospray ionization (ESI) collision-induced dissociation (CID) mass spectrometry (MS). Full characterization of the nitrofuran derivatives was accomplished with ultraviolet (UV) and exhaustive nuclear magnetic resonance (NMR) analysis. A major advantage of the described procedure is that it can be extended to the preparation of other carbon-13-labeled derivatives of metabolites of nitrofuran antibiotics. Keywords: Stable isotope; nitrofuran antibiotics; metabolites; 3-amino-2-oxazolidinone; semicarbazide; 1-aminohydantoin; 3-amino-5-morpholinomethyl-2-oxazolidinone; synthesis; NMR; MS

This publication has 11 references indexed in Scilit: